formats of files and UDP-streams used on D-STAR
Hoort bij: Geen rubriek — kristoff @ 23:02 

Format of files and UDP-streams used on D-STAR

The goal of this document is to describe the format of file-formats and UDP network-streams used on D-STAR.

* D-STAR STREAM-FORMAT
Sending a voice-message to a repeater is achieved by sending a UDP-stream to the “dsgwd” process on the repeater gateway-PC. This application listens by default on UDP port 40000. Packets needs to be send every 20 ms.

The format of this UDP-stream to be send is described below. This stream-format is very simular to the file-format of the .dvtool files. The differences between these two formats are described further down in this text.

1/ The configuration-frame:

The first frame of the UDP-stream is a start-frame and is 56 bytes in length. It contains addressing information about the stream:

· octets 0 to 3: “DSVT”

· octet 4: 0×10 (= frame is configuration-frame)

· octets 5 to 7: 0×00, 0×00, 0×00

· octet 8: 0×20 (= stream is voice-stream)

· octets 9 to 11: 0×00, 0×01, 0×01

· octets 12 to 13: streamid (random, 16 bits)

· octet 14: 0×80

· octets 15 to 17: 0×00, 0×00, 0×00 (flag1, flag2, flag3) (*)

· octets 18 to 25: destination = repeatername + destination module

· octets 26 to 33: departure = repeatername + ‘G’

· octets 34 to 41: companion = “CQCQCQ  ”

· octets 42 to 49: own1 = repeatername

· octets 50 to 53: own2 = “RPTR”

· octets 54 to 55: packet frame checksum

(*) The exact description of the flags can be found in the “shogen” DSTAR documentation. Some D-STAR applications set flag1 to “0×40″. This sets the “repeater” bit (bit 6) to 1.

2/ A voice-packet

The concequative frames in the UDP-stream are 27 byte voice-packet. They contains 20 ms of voice-data. The frame-format is described below:

· octets 0 to 3 : “DSVT”

· octet 4: 0×20 (= frame is voice-frame)

· octets 5 to 7 : 0×00, 0×00, 0×00

· octet 8: 0×20 (= stream is voice-stream)

· octets 9 to 11: 0×00, 0×01, 0×01

· octets 12 to 13: streamid (random, 16 bits, same as in header)

· octet 14: framecounter (goes from 0 to 20)

· octets 15 to 23: ambe-data

· octets 24 to 26: slow-speed data

In the last frame of a stream, the frame-counter is increased by 0×40.

The .dvtool file format
As already mentioned, the format of the .dvtool files (binary files containing AMBE-encoded audio) is very simular to the network stream-format used to transport D-STAR DV-streams.

In fact, the only difference between these two formats, are 10 bytes which are added in front of the configuration-frame. They contain the following information:

· 6 octets containt “DVTOOL”

· A 4 octet length-indication (in little-endian format), indicating the number of frames present in frame (startframe + voiceframes)

· In front of each frame, a 2 byte length field is added, formated in small-endian format. It contains {0×38 0×00} for a configuraton-frame or {0×1b 0×00} for a voice-frame.

Note that, when converting a .dvtool to an actual UDP-stream send to the repeater, some parts of the information in the .dvtool file is overwritten:

In the configuration-frame

· all repeater-information (like the name of the repeater and the module) is replaced by the actual name and module that is used.

· A new streamid is generated

· A new packet checksum is calculated.

In the voice-frames:

· the streamid is replaced to match the one chosen in the configuration-frame.

The .AMBE file format
The .ambe files are designed to hold AMBE pre-encodec audio-fragments; like individual words or parts of sentences.

These files can be easily concatenated together to make up a complete voice-announcement. This is possible as .ambe-files are just plain text-files.

The format-description of the .ambe format is as follows:

· .ambe files are plain ascii

· any line beginning with ‘#’ is concidered to be comment and is ignored

· Althou comments-lines are ignored, some lines are reserved for future expansion: 

· Lines beginning with “#C Version: ” contain the version of the protocol.

· The current protocol-version is 1.0

· Lines beginning with “#C Name: ” contain the name of the ambe-file

· Lines beginning with “#C Info: ” contain any additional information

Currently, all these three lines are optional

· Lines containing actual AMBE-data use this format: 00000 00 AABBCCDDEEFF001122

· The 1ste and 2nd are purely informational. They field contain sequencing-information of ambe frame. The 1ste field contain the seconds (digits from 00000 to 99999) the 2nd field contains hunderds of seconds (digits from 00 to 99) since the beginning the encoding-process.

As DSTAR sends and receives a AMBE-frame every 1/50th of a second, the 2nd field will go up by 2 for every frame.

As .ambe files are intended to be used to build voice-messages containing multiple smaller .ambe files; this timing-information is not used in the actual process of producing the resulting .dvtool file. They are only there for informational reason, so give some idea of the length of the resulting audio-message.

· The 3th field contains the actual AMBE data.

As D-STAR uses AMBE voice-encoding at 3600 bps (2400 bps audio + 1200 bps FEC), any .ambe frame of 1/50 of a second contains 9 bytes of .ambe audio. (3600 bps = 450 bytes per second -> divide that by 50 frame per second and you get 9 bytes per frame)

The AMBE-data is encoded as 18 hex-characters.

· .ambe-files do NOT contain slow-speed data information.

The slow-speed-data part
The slow speed data is stored in the 3 last octets of every DV-frame (hereafter called a “packet”) just behind the 9 AMBE octets of voice-data. The “shogen” DSTAR documentation only specifies two things:

· slow-speed data is organisated in a “superframe” structure of 21 packets of 3 bytes (the 3 octets at the end of 21 consequative DV-frame).
The 1ste packets contains a 24 bit syncronisation-pattern: 

· twice the “7 bit-sequence maximum-lenght sequence” 1101000 (read from LEFT to RIGHT, so 0001011)

· A 10 bit syncronisation-pattern “1010101010″ (read from LEFT to RIGHT, so 0101010101)
In addition to that, the order of the 3 octets is reversed.

· Before sending, the default D-STAR scrambler is applied to the slow-speed data. This can be emulated by doing a exor operation on the 3 bytes of the slow-speed data in every DV-frame with the values 0×70, 0×4f and 0×93 (for octets 1 to 3 of the slow-speed packet)
Note that the D-STAR scrambler is NOT applied to the syncronisation-packet (i.e. the slow-speed data present of the first packet of a superframe)

ICOM has implemented an extension to the slow-speed data protocol, which has been reverse-engineered by Jonathan G4KLX and Denis Bederov DL3OCK. See this URL for more info: http://www.qsl.net/kb9mwr/projects/voip/dstar/Slow%20Data.pdf
In the current version of the voice-announcement package, only the ”20 bytes free-text” extension is implemented. This extensions allows for a 20-byte text to be send along in a DV-stream. That text will be shown on the display of the tranceiver.

The specifications are as follows:

· The 20 bytes of data are divided in 4 “groups” of 5 octets each.

· Each group is distributed over two 3-bytes slow-speed packets in a DV-frame

· The 5 bytes of text-data are proceeded by 1 octet containing 0×40 up to 0×43.

· If the message is less then 20 bytes, it is filled up with spaces

· The remaining part of the slow-data superframe is filled up with a filler (containing “0×66″).

73

Kristoff ON1ARF

How to create a voice-announcement on a D-STAR repeater?
Voice-announcement system on analog repeaters have existed for .. well .. almost forever. D-STAR repeaters, on the other hand, have sofar had this in a very limited way.

The main reason for this is related to the use of the AMBE voice-codec in D-STAR. AMBE-encoders are only available via an external hardware-device (either a chip inside the transceiver or the DVdongle). As this technology is usually not present in a D-STAR repeater, it has up-to-now only been possible to play out a fixed audio-message.

In practicles, this makes creating voice-announcements very cumbersome.

The “dstar voice-announce” package aims to provide additional ways to generate voice-announcement messages on a D-STAR repeater. It is designed to be as flexible as possible, to provide as much choice to the sysops.

For that reason, it is also provided as open-source.

What are the different option to create a voice-announcement on a D-star repeater?
In general, there are four different ways this can be done:

1. The current system, as provided by the software that exists now, concists of the following steps: 

· Use the DVdongle application or the dplus “echotest” feature to encode a spoken message into a .dvtool file

· copy that file to the repeater

· play out that audio-message using dplus or dvtool_send

As the applications mentioned above can only encode audio being spoken into the microphone of a computer or transceiver, it does not possible to encode just “any” audio-message with this, nor messages created by the voice-announcement system currently used for analog FM-repeaters.

2. “wav2ambe”. This application does what its name implies: it encodes any wav-file into a ambe file. It can produce binairy .dvtool files (the native file-format used by the D-star repeater-software) or text-based .ambe files.The principle is simple: 

· Take any audio-message in .wav format and convert it to a .dvtool format

· If necessairy, copy it to the repeater

· play it out

The main advantage of this approach is that the wav2ambe application can convert any wav-file. This includes:

· pre-recorded wav-files “cleaned up” by an audio-editing software

· wav-files created on the fly by a speech-synthesis system

· wav-files created by the application that creates the voice-announcement on your FM-repeater

Two more remarks:

· This approach does need a dvdongle to encode the wav-file into a .dvtool file. However, it is not necessairy to that this dvdongle is located on the repeater itself. An option is to have the dongle on a server somewhere on the internet, run the wav2ambe tool overthere and then send the ambe-file to the repeater (e.g. via ssh).
For senarios where a voice-message message is played out on multiple repeaters or modules (like a simple “good morning, it is now 9 o’clock”), the .dvtool file only needs to be created once (requiring one one single DVdongle) and can then be send to all repeaters / modules via ssh.

· By design, the dv-dongle is a real-time device, designed to encode and decode ambe-streams at the same rate as they are played out. This means that a message of (say) 10 seconds needs 10 seconds to encode.
As the encoding of the message has to happen before playing it out, this creates at least (in this case) a 10 second delay before the message can be played out.
Is this a problem? Well, it depends.
If the message just tells the time, that playing out a “it is now 6 PM” at 18:00:05 is probably not a problem.
However, a message to be played out after linking is established is best played out at that moment itself and not 15 seconds afterwards.

3. Concatenating ambe-files into one announcement:In aditional to the senario above, the “wav2ambe” application mentioned above can also be used to create .ambe-files instead of binairy .dvtool files. The big advantage of these text-based .ambe files is that they allow creating voice-messages by simply concatenating files together. The principle is simple: 

· This process starts with a library of .ambe-files all containing one word or part of a sentence.

· by concatenating the .ambe files for “good morning”, “the time is now” “6″ “o’clock”, a complete voice-announcement can be created (also in .ambe format)

· This is then announcement is converted to the binary .dvtool file-format, which can be played-out by the repeater

The big advantage of this senario is that individual repeaters do not need a dvdongle for this. The ambe-files are already pre-encoded in the correct format. This can save several hunderd euro per repeater!
However, the problem is that there is a need for a good-quality library of .ambe-files to start with. Tests have shown that encoding small pieces of audio (like a single word) with the DVdongle does not always produce very good quality ambe-files. 

4. wav2stream: This application is designed to deal with one of the disadvantages of the wav2ambe application: the delay created by the time needed to encode a wav-file into a ambe file. (see the 2nd remark in senario 2 above).Wav2stream is able to encoded a wav-file into the ambe-format and stream it out to the repeater at the same time. This way, there is no delay anymore between creating the .wav-file and playing it out.
It will also provide a means to append a 20 character text-message to the voice-announcement. 

This application is currently  in pre-alpha development-stage; but test-versions are already available on request. 

73

Kristoff ON1ARF

