
draft-heffner-frag-harmful-02
IETF 66, July 2006

Fragmentation Considered
Very Harmful

John Heffner <jheffner@psc.edu>
Matt Mathis <mathis@psc.edu>

Ben Chandler <bchandle@psc.edu>

Overview

• Draft history and status
• Review of the problem
• Some possible workarounds (and why

they’re not included in the draft)

History and status
• Draft title is a reference to Kent/Mogul SIGCOMM ‘87

“Fragmentation Considered Harmful”
• We document additional problem which can result in corrupted

datagrams (“very” harmful)
• Problem has long been in the lore, but not well known or

published. It’s time to fix that.
• Wrote the draft a couple years ago, didn’t know exactly where it

belonged. Lars Eggert currently shepherding through the AD-
sponsored draft process.

• Received and incorporated some feedback from tsvwg and int-
area lists, no major items.

• We consider it mostly done.

Mis-association

• IPv4 fragments are associated with each
other by a 16-bit identification
(IP ID) field.

• If we send 216 datagrams in less than the
timeout for a fragment reassembly buffer, we
wrap the IP ID field and can mis-associate
fragments. Some call these “frankengrams.”
:-)

• With common hardware (100 Mbps) and most
OS default settings, this easily happens
today.

Cyclical mis-association

• If you lose the first fragment, the rest of the
datagram sits in the reassembly buffer.

• When the IP ID is wrapped, the first new
fragment will be mis-associated with the old
fragments. The rest of the new fragments will
sit in the reassembly buffer until the next IP
ID wrap, forming a self-propogating cycle.

• You can have a number of concurrent cycles.

Effects

• Packets get dropped when the checksum test
fails.

• With such high corruption rate, 16-bit
checksum isn’t strong enough. Streams get
corrupted.
– UDP checksum is especially weak, likely to have

“hot spots”
• If you’re running UDP without a checksum,

you’ve got trouble!

Who’s affected

• Protocols using fragmentation
– Doing MTU discovery eliminates the

problem.
• High rate per protocol (not per flow) per

address pair
– NAT makes the situation worse (surprise)

• Low rate (DNS) is probably okay
• Fixed rate (streaming media) - unclear

Experimental observations

• Moved 10 TB of random data with a
UDP bulk transport tool (Reliable Blast
UDP) with 100 Mbps NIC, Linux box

• Induced intermittent loss with small
cross-traffic flows

• Observed 8847668 checksum
errors, 121 corruptions

Work-arounds (1)

• Adjust fragment boundaries on wraps of
the IP ID
– No matter what, you always end up having

some wraps that overlap
– Practically, it’s expensive and difficult to

coordinate this
– Doesn’t work if fragmentation occurs in the

network

Work-arounds (2)

• Shorten the timeout
– Some peers may be too fast while others

simultaneously too slow.
– Doesn’t work with classical global timeout.

Work-arounds (3)

• Per-peer adaptive timeout
– Best way is to use packet count rather than actual

timer
– Recently implemented in Linux
– Mostly works, little reason not to do it

• Still some issues, for example NAT, and possibly multi-
path

– Does require per-peer state
– Main difficulty from a standards perspective: work-

around implemented on receiver, but sender has
no way of knowing if it’s safe or not.

Informational only

• This draft only documents a known
problem, and is strictly informational.

• We didn’t want to prescribe a fix
because:
– Each solution has some known problems
– Under the cases where the problem

occurs, it is usually best to avoid
fragmentation anyway (for reasons stated
in the Kent/Mogul paper)

IPv6

• Uses a 32-bit ID field (instead of 16 bits)
• So, IPv6 is safe — for now. :-) We only

have a few orders of magnitude to go.

